Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Shan He

Department of Applied Chemistry, Huaqiao University, Quanzhou 362011, People's Republic of China, and Department of Chemistry, Biochemistry and Molecular Biology, North Dakota State University, Fargo, ND 58105, USA

Correspondence e-mail:

hongshan.he@ndsu.edu

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.013 \AA$
H -atom completeness 96%
R factor $=0.077$
$w R$ factor $=0.195$
Data-to-parameter ratio $=12.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
\{Tris[2-(1H-imidazol-2-ylmethyleneamino- $\kappa^{2} N, N^{\prime}$)ethyl]amine\}cobalt(II) bis(perchlorate) hemihydrate

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{10}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Co}^{\mathrm{II}}$ ion is coordinated by six N atoms from the tripodal organic ligand in a distorted square-bipyramidal geometry. There are two cations, four anions and one water molecule in the asymmetric unit.

Comment

Previously, we have reported the crystal structure of the $\mathrm{Mg}^{\text {II }}$ complexes of tris(2-(4-imidazolylmethyleneaminoethyl)amine (He et al., 2004). The results showed that the tripodal ligand chelates the metal ion, forming stable complexes with coordination by up to six N atoms. We now present the crystal structure of the title compound, (I), a $\mathrm{Co}^{\mathrm{II}}$ complex of the same amine.

Complex (I) crystallizes in the monoclinic system with two independent cations, four anions and one water molecule in the asymmetric unit (Fig. 1). For the Co 1 cation, the $\mathrm{Co}^{\mathrm{II}}$ ion is coordinated by three imine and three imidazolyl N atoms. The geometry is distorted square-bipyramidal, with atoms N2, N6, N 8 and N 9 in equatorial positions, and N 3 and N5 in axial positions. The tripodal bridging amine N atom is situated 3.332 (7) \AA from the metal center, indicating a weak nonbridging interaction. The bite angles are given in Table 1. The bite distances, $\mathrm{N} \cdots \mathrm{N}$, are 2.484 (10), 2.525 (9) and 2.521 (10) \AA, for $\mathrm{N} 2 \cdots \mathrm{~N} 3$, N5 $\cdots \mathrm{N} 6$ and $\mathrm{N} 8 \cdots \mathrm{~N} 9$, respectively.

The coordination environment around Co 2 is almost identical to that of Co1, except for slight variations in the bond distances and angles.

Experimental

The title compound was prepared according to the literature method of He et al. (2004). An acetonitrile solution of the compound was kept at room temperature and the solvent evaporated slowly. Crystals of

Received 2 March 2007
Accepted 12 June 2007
\qquad

Figure 1
View of the Co^{I} cation of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

View of the $\mathrm{Co}^{\text {II }}$ cation of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(I) suitable for X-ray diffraction analysis were obtained one month later.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{10}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=645.30$
Monoclinic, $P 2_{1} / n$
$a=9.1219$ (18) \AA
$b=19.005$ (4) \AA
$c=28.251$ (6) \AA
$\beta=95.28$ (3) ${ }^{\circ}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.826, T_{\text {max }}=0.826$
$V=4876.9(17) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.99 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

37068 measured reflections 9021 independent reflections 4571 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.100$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.077$
$w R\left(F^{2}\right)=0.195$
$S=1.05$
713 parameters
H -atom parameters constrained
9021 reflections
$\Delta \rho_{\text {max }}=0.69 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.82 \mathrm{e}^{-3}$

Table 1
Selected bond angles $\left(^{\circ}\right.$).

N3-Co1-N2	$82.2(3)$	N12-Co2-N14	$82.8(3)$
N9-Co1-N8	$83.0(3)$	N15-Co2-N17	$82.7(3)$
N6-Co1-N5	$83.2(3)$	N18-Co2-N20	$82.5(3)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 7-\mathrm{H} 7 \cdots \mathrm{~N}^{\mathrm{i}}$	0.86	1.92	$2.663(11)$	144
$\mathrm{~N} 10-\mathrm{H} 10 \cdots \mathrm{O}^{\mathrm{ii}}$	0.86	2.06	$2.816(10)$	146
N10-H10 $\mathrm{O}^{\mathrm{iii}}$	0.86	2.38	$2.985(11)$	128
N16-H16 $\mathrm{N}^{\mathrm{N}} 3^{\mathrm{i}}$	0.86	1.91	$2.654(11)$	144
N19-H19 $\mathrm{O}^{\mathrm{iii}}$	0.86	2.46	$3.035(11)$	125
N19-H19 \cdots O1	0.86	2.09	$2.873(11)$	151

Symmetry codes: (i) $x+1, y, z$; (ii) $x, y+1, z$; (iii) $-x,-y,-z$.
H atoms were positioned geometrically and refined in riding mode, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl $\mathrm{H}, \mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H , and $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for amine H . The two H atoms on O 1 could not be located in a difference map.

Data collection: SMART (Bruker, 1998); cell refinement: SAINTPlus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the National Natural Science Foundation of China (grant No. 20571027), the Natural Science Foundation of Fujian Province, China (grant No. E0410019), and the Chemistry Department of North Dakota State University, USA.

References

Bruker (1998). SMART (Version 5.618) and SAINT-Plus (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
He, H., Rodgers, K. R. \& Arif, A. M. (2004). J. Inorg. Biochem. 98, 667-676. Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2007 International Union of Crystallography All rights reserved

